Energy Comparison between a Load Sensing System and Electro-Hydraulic Solutions Applied to a 9-Ton Excavator
Paolo Casoli,
Fabio Scolari,
Carlo Maria Vescovini and
Massimo Rundo
Additional contact information
Paolo Casoli: Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
Fabio Scolari: Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
Carlo Maria Vescovini: Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
Massimo Rundo: Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
Energies, 2022, vol. 15, issue 7, 1-15
Abstract:
With the increasingly stringent regulations on air quality and the consequent emission limits for internal combustion engines, researchers are concentrating on studying new solutions for improving efficiency and energy saving even in off-road mobile machines. To achieve this task, pump-controlled or displacement-controlled systems have inspired interest for applications in off-road working machines. Generally, these systems are derived from the union of a hydraulic machine coupled to an electric one to create compact components that could be installed near the actuator. The object of study of this work is a 9-ton excavator, whose hydraulic circuit is grounded on load sensing logic. The validated mathematical model, created previously in the Simcenter Amesim© environment, represents the starting point for developing electro-hydraulic solutions. Electric components have been inserted to create different architectures, both with open- and closed-circuit layouts, in order to compare the energy efficiency of the different configurations with respect to the traditional load sensing system. The simulations of a typical working cycle show the energy benefits of electro-hydraulic solutions that allow for drastically reducing the mechanical energy required by the diesel engine and, consequently, the fuel consumption. This is mainly possible because of the elimination of directional valves and pressure compensators, which are necessary in a load sensing circuit, but are also a source of great energy dissipations. The results show that closed-circuit solutions produce the greatest benefits, with higher energy efficiencies than the open-circuit solution. Furthermore, closed-circuit configurations require fewer components, allowing for more compact and lighter solutions, as well as being cheaper.
Keywords: excavator; electro-hydrostatic actuator; load sensing; energy saving; pump-controlled systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2583/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2583/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2583-:d:785382
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().