EconPapers    
Economics at your fingertips  
 

Performance Comparison of LMNO Cathodes Produced with Pullulan or PEDOT:PSS Water-Processable Binders

Alessandro Brilloni, Francesco Marchesini, Federico Poli, Elisabetta Petri and Francesca Soavi
Additional contact information
Alessandro Brilloni: Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy
Francesco Marchesini: Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy
Federico Poli: Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy
Elisabetta Petri: Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy
Francesca Soavi: Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy

Energies, 2022, vol. 15, issue 7, 1-11

Abstract: The aim of this paper is to demonstrate lithium metal battery cells assembled with high potential cathodes produced by sustainable processes. Specifically, LiNi 0.5 Mn 1.5 O 4 (LMNO) electrodes were fabricated using two different water-processable binders: pullulan (PU) or the bifunctional electronically conductive poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). The cell performance was evaluated by voltammetric and galvanostatic charge/discharge cycles at different C-rates with 1M LiPF 6 in 1:1 ( v : v ) ethylene carbonate (EC):dimethyl carbonate (DMC) (LP30) electrolyte and compared to that of cells assembled with LMNO featuring poly(vinylidene difluoride) (PVdF). At C/10, the specific capacity of LMNO-PEDOT:PSS and LMNO-PU were, respectively, 130 mAh g −1 and 127 mAh g −1 , slightly higher than that of LMNO-PVdF (124 mAh g −1 ). While the capacity retention at higher C-rates and under repeated cycling of LMNO-PU and LMNO-PVdF electrodes was similar, LMNO-PEDOT:PSS featured superior performance. Indeed, lithium metal cells assembled with PEDOT:PSS featured a capacity retention of 100% over 200 cycles carried out at C/1 and with a high cut-off voltage of 5 V. Overall, this work demonstrates that both the water-processable binders are a valuable alternative to PVdF. In addition, the use of PEDOT:PSS significantly improves the cycle life of the cell, even when high-voltage cathodes are used, therefore demonstrating the feasibility of the production of a green lithium metal battery that can exhibit a specific energy of 400 Wh kg −1 , evaluated at the electrode material level. Our work further demonstrates the importance of the use of functional binders in electrode manufacturing.

Keywords: lithium-ion battery cathode; LMNO; pullulan; PEDOT:PSS; water processable binder; electronically conducting polymer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2608/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2608/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2608-:d:786081

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2608-:d:786081