EconPapers    
Economics at your fingertips  
 

Distributed Active Power Optimal Dispatching of Wind Farm Cluster Considering Wind Power Uncertainty

Peizhao Hong and Zhijun Qin
Additional contact information
Peizhao Hong: College of Electrical Engineering, Guangxi University, Nanning 530004, China
Zhijun Qin: College of Electrical Engineering, Guangxi University, Nanning 530004, China

Energies, 2022, vol. 15, issue 7, 1-16

Abstract: With the large-scale volatility and uncertainty of the centralized grid connection of wind power, the dimensionality disaster problem of wind farm cluster (WFC) scheduling optimization calculation becomes more and more significant. In view of these challenges, a distributed active power optimal dispatch model for WFC based on the alternating direction multiplier method (ADMM) is proposed, and the analytical description of the distribution characteristics of the active power output of wind farms is introduced into the proposed model. Firstly, based on the wake effect, the Weibull distribution of wind speed is transformed by the impulse function to establish an analytical model of the active output distribution of the wind farm. Secondly, the optimization goal is to minimize the expected sum of the deviations of the dispatch instructions and the output probability density function of each wind farm, constructing a WFC active power optimal dispatch model considering uncertainty. Finally, the proposed model is decoupled in space and time into sub-optimization problems, and the ADMM is improved to construct an efficient solution algorithm that can iterate in parallel and decouple a large number of decision variables at the same time. The model is compared with other current classical models through the evaluation of multiple recommendation evaluation metrics, and the experimental results show that the model has a 3–7% reduction in dispatched power shortfalls and a 4–21% improvement in wind power utilization. The optimization algorithm for model construction has extremely high computational efficiency and good convergence. The results show that when the update step size is three, the convergence is the fastest, and when the update step size is six, the convergence is the slowest; in addition, when the number of wind farms is greater than eight, the distributed computing efficiency has an incomparable advantage over the centralized one. It plays a helpful role in wind power consumption and the efficient calculation of the power grid and effectively improves the reliability of the power grid.

Keywords: wind farm cluster (WFC); distributed algorithm; wind power dispatching; alternating direction multiplier method (ADMM); space–time decoupling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2706/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2706/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2706-:d:788326

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2706-:d:788326