Comparative Study of Non-Rare-Earth and Rare-Earth PM Motors for EV Applications
Yawei Wang,
Nicola Bianchi and
Ronghai Qu
Additional contact information
Yawei Wang: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Nicola Bianchi: Department of Industrial Engineering, University of Padova, 35122 Padova, Italy
Ronghai Qu: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Energies, 2022, vol. 15, issue 8, 1-18
Abstract:
Recently, non-rare-earth motors are attracting more and more attention due to the booming of the electric vehicle (EV) market and, more importantly, the increasing price of the rare-earth magnet material. This paper focuses on the performance comparison among a commercial interior permanent magnet (IPM) motor and two non-rare-earth motors, including a synchronous reluctance motor (SynRM) and a permanent-magnet-assisted synchronous reluctance motor (PMaSynRM). The design procedure to develop a high-torque-density, low-torque-ripple and high-efficiency SynRM is presented. Combined with a developed automatic modeling and simulation procedure, the finite element analysis (FEA)-based differential evolution (DE) algorithm is introduced for the SynRM rotor optimization. In order to fully inspire the potential of the SynRM, a novel method to optimize the motor split ratio is proposed under the constraint of the copper loss. In addition, different slot–pole combinations are investigated to maximize the motor torque, and the rotor structure is also dealt with towards the centrifugal stress at the maximum operating speed. Finally, the motor performance comparison is carried out, and the results show that although the SynRM achieves almost 61% cost savings, its poor torque capability, power factor and flux weakening (FW) capability are non-negligible defects. On the contrary, the PMaSynRM exhibits excellent features for the EV applications in terms of cost, torque density, efficiency and FW capability. This paper presents a novel split ratio optimization method for the optimal SynRM/PMaSynRM design and demonstrates the characteristics of the IPM motors, SynRMs and PMaSynRMs for EV applications.
Keywords: differential evolution; electromagnetic performance; flux-weakening; non-rare-earth; split ratio; synchronous reluctance machine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/8/2711/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/8/2711/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:8:p:2711-:d:788691
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().