EconPapers    
Economics at your fingertips  
 

Utility-Scale Storage Integration in the Maltese Medium-Voltage Distribution Network

Alexander Micallef, Cyril Spiteri Staines and Alan Cassar
Additional contact information
Alexander Micallef: Department of Industrial Electrical Power Conversion, University of Malta, MSD 2080 Msida, Malta
Cyril Spiteri Staines: Department of Industrial Electrical Power Conversion, University of Malta, MSD 2080 Msida, Malta
Alan Cassar: Network Planning & Operations Control Centre, Enemalta PLC, MRS 1571 Marsa, Malta

Energies, 2022, vol. 15, issue 8, 1-20

Abstract: Deployment of renewable energy sources in Malta is limited by grid integration constraints. Photovoltaic (PV) systems pose a significant risk to grid stability due to their inherent intermittency and result in overvoltages at the medium-voltage and low-voltage networks. Investments in utility-scale battery energy storage systems (BESS) will facilitate further deployment of renewables and will help to achieve energy security. This study proposed a novel sizing strategy for utility-scale battery energy storage systems (BESS) based only on technical considerations to find the minimum required storage capacity based on historical electricity demand and PV generation. The modeling and simulation were constrained to a section of the Gozitan 11 kV electrical distribution network and the results showed that the utility-scale storage can reduce the impact of PV systems on the grid infrastructure by avoiding reverse power flows and improve the local energy security by reducing the peak electricity demand. The central BESS and the decentralized coordinated BESS with “equal sizing” stored 3.4 MWh while the decentralized coordinated BESSs with “optimal sizing” stored 5.307 MWh. In all three cases, the evening peak demand was reduced by 30.5% from 2.62 MW down to a defined limit of 1.82 MW. From the results presented in this paper, the “optimal sizing” strategy showed that the BESSs have most benefit when installed next to the local PV generation. Hence, by deploying coordinated utility-scale BESSs sized according to the PV generation potential, it is expected that the penetrations of PV generation can be increased even with the present distribution network infrastructure.

Keywords: peak shaving; battery sizing; utility-scale; battery energy storage systems; overvoltage; renewable energy sources (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/8/2724/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/8/2724/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:8:p:2724-:d:789203

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2724-:d:789203