EconPapers    
Economics at your fingertips  
 

Techno-Economic Analysis of Grid-Connected PV Battery Solutions for Holiday Homes in Sweden

Frank Fiedler and Joaquin Coll Matas
Additional contact information
Frank Fiedler: School of Information and Engineering, Dalarna University, 79188 Falun, Sweden
Joaquin Coll Matas: School of Information and Engineering, Dalarna University, 79188 Falun, Sweden

Energies, 2022, vol. 15, issue 8, 1-21

Abstract: Grid-connected PV battery systems for private homes are becoming increasingly popular in many countries, including Sweden. This study aimed to evaluate the techno-economic feasibility of such distributed, grid-connected PV battery systems for single homes at a Swedish holiday location. It was especially of interest to investigate the impact of demand charges, as they are frequently introduced by utilities in Sweden and are also common in popular winter sport regions. Grid-connected PV battery systems were sized and optimized based on their net present cost. Load patterns, incentives, demand tariff structures and electricity price variation were used to study the sensitivity of the obtained results. Grid-connected residential PV battery systems were found to be equally profitable compared to grid-connected PV systems without batteries when demand charges were applied. When the load profiles had peak loads throughout the whole year and the batteries were large enough sized to shave many peaks, grid-connected PV battery systems had slightly higher profitability than grid-connected PV systems without batteries. The total savings also depended on the actual rate of demand charge. The good profitability we found greatly depends on the current state incentives for these systems in the form of tax credits for surplus electricity and investment costs. Removing the tax credit for surplus electricity would reduce the savings generated by a grid-connected PV system without batteries significantly more than for grid-connected PV systems with batteries.

Keywords: residential PV battery systems; grid-connected; demand charges; peak shaving; holiday homes (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/8/2838/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/8/2838/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:8:p:2838-:d:792937

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2838-:d:792937