Dynamics and Control of an Energy-Efficient, Power-Regenerative, Hydrostatic Wind Turbine Dynamometer
Biswaranjan Mohanty and
Kim A. Stelson
Additional contact information
Biswaranjan Mohanty: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Kim A. Stelson: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Energies, 2022, vol. 15, issue 8, 1-16
Abstract:
Dynamometers are used to evaluate the real-world performances of drivetrains in various loading conditions. Due to its superior power density, high bandwidth, and design flexibility, a hydrostatic power-regenerative dynamometer is an ideal candidate for hydrostatic wind turbine transmission testing. A dynamometer can emulate the wind turbine rotor dynamics and allow the investigation of the performance of a unique hydrostatic drivetrain without actually building the physical system. The proposed dynamometer is an energy-efficient system with counter-intuitive control challenges. This paper presents the dynamics, control synthesis, and experimental validation of a power-regenerative hydrostatic dynamometer. A fourth-order non-linear model with three inputs was formulated for the dynamometer. The strength of input–output couplings was identified, and two different decoupling controllers were designed and implemented. During wind turbine testing, the synchronous generator turns at a constant speed and the system model is linear. A steady-state decoupling controller was developed for independent control of the drive and transmission. The implemented decoupling controller demonstrated a negligible change in rotor speed for a 40 bar step increase in pressure, but a 20 bar pressure spike for a 4 rpm step change in rotor speed. However, during starting and stopping, the synchronous generator speed is not constant, and the system model is nonlinear. Therefore, a steady-state decoupling controller will not work. Thus, a decentralized controller with feed-forward control and gain scheduling was designed and implemented. A reference command was designed to avoid cavitation, pressure spikes, and power flow reversal during start-up. The experimental results show precise tracking in steady-state and transient operations. The decentralized controller demonstrated a negligible change in rotor speed for a 40 bar step increase in pressure but a 100 bar pressure spike for a 4 rpm step increase in rotor speed. The pressure spike was reduced by 80 bar with the implementation of feed-forward gain. The proposed electro-hydro-mechanical system requires less power and has the potential to reduce energy expenditure by 50 % .
Keywords: hydrostatic transmission; wind turbine transmission; power regenerative dynamometer; nonlinear system; decoupling controller; decentralized controller; relative gain array (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/8/2868/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/8/2868/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:8:p:2868-:d:793676
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().