EconPapers    
Economics at your fingertips  
 

Fluid-Structure Interaction Analysis of a Competitive Car during Brake-in-Turn Manoeuvre

Jakub Broniszewski and Janusz Ryszard Piechna
Additional contact information
Jakub Broniszewski: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warszawa, Poland
Janusz Ryszard Piechna: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warszawa, Poland

Energies, 2022, vol. 15, issue 8, 1-16

Abstract: The relationship between the presented work and energy conservation is direct and indirect. Most of the literature related to energy-saving focuses on reducing the aerodynamic drag of cars, which typically leads to the appearance of vehicle motion instabilities at high speeds. Typically, this instability is compensated for by moving aerodynamic body components activated above a certain speed and left in that position until the vehicle speed drops. This change in vehicle configuration results in a significant increase in drag at high velocities. The presented study shows a fully coupled approach to fluid–structure interaction analyses of a car during a high-speed braking-in-turn manoeuvre. The results show how the aerodynamic configuration of a vehicle affects its dynamic behaviour. In this work, we used a novel approach, combining Computational Fluid Dynamics (CFD) analysis with the Multibody Dynamic System. The utilisation of an overset technique allows for car movement in the computational domain. Adding Moving Reference Frame (MRF) to this motion removes all restrictions regarding car trajectory and allows for velocity changes over time. We performed a comparative analysis for two aerodynamic configurations. In the first one, a stationary rear airfoil was in a base position parallel to a trunk generating low drag. No action of the driver was assumed. In the second scenario, brake activation initiates the rotation of the rear airfoil reaching in 0.1 s final position corresponding to maximum aerodynamic downforce generation. Also, no action of the driver was assumed. In the second scenario, the airfoil was moving from the base position up to the point when the whole system approached its maximum downforce. To determine this position, we ran a separated quasi-steady analysis in which the airfoil was rotating slowly to avoid transient effects. The obtained results show the importance of the downforce and load balance on car stability during break-in-turn manoeuvres. They also confirm that the proposed methodology of combining two independent solvers to analyse fluid–structure phenomena is efficient and robust. We captured the aerodynamic details caused by the car’s unsteady movement.

Keywords: vehicle aerodynamics; coupled analysis; car dynamics; FSI; cornering (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/8/2917/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/8/2917/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:8:p:2917-:d:794833

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2917-:d:794833