EconPapers    
Economics at your fingertips  
 

Thermodynamic Optimization of Low-Temperature Cycles for the Power Industry

Vladimir Kindra, Nikolay Rogalev, Andrey Rogalev, Vladimir Naumov and Ekaterina Sabanova
Additional contact information
Vladimir Kindra: Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia
Nikolay Rogalev: Department of Thermal Power Plants, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia
Andrey Rogalev: Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia
Vladimir Naumov: Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia
Ekaterina Sabanova: Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia

Energies, 2022, vol. 15, issue 9, 1-21

Abstract: The fuel price increase and severe environmental regulations determine energy-saving importance. Useful utilization of low-potential heat sources with 300–400 °С temperature becomes topical. The application of low-temperature power production facilities operating low-boiling heat carriers could be a solution to this problem. A comparative parametric study of a number of heat carriers resulted in a choice of the most promising fluids that are not expensive, have low toxicity and flammability, low ozone depletion and low global warming potential. These heat carriers are considered for application in simple power production cycles with and without regeneration. The main parameters were optimized at the initial temperatures of 323.15–623.15 K. The cycle without regeneration has a maximal net efficiency of 29.34% using the water at an initial temperature of 623.15 K. The regenerative cycle at a temperature below 490 K has its maximal efficiency using a water heat carrier, and at a higher temperature above 490 K with R236ea. The cycle with R236ea at 623.15 K has an electrical net efficiency of 33.30%. Using a water heat carrier, the maximal efficiency can be reached at pressures below 5 MPa for both cycles. Among the organic heat carriers, the minimal optimal initial pressure of a simple cycle is reached with the R236ea heat carrier below 45 MPa without regeneration and below 15 MPa with regeneration. Therefore when utilizing the latent heat with temperatures above 500 K R134a, R236ea and R124 are the most promising organic fluids. Such conditions could be obtained using different industrial sources with water condensation at elevated pressures.

Keywords: organic working fluid; low-temperature; Rankine cycle; Brayton cycle (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/2979/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/2979/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:2979-:d:796976

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:2979-:d:796976