EconPapers    
Economics at your fingertips  
 

Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor

Jie Chen, Jiajun Wang and Bo Yan
Additional contact information
Jie Chen: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
Jiajun Wang: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
Bo Yan: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

Energies, 2022, vol. 15, issue 9, 1-15

Abstract: Direct torque control (DTC) is widely used in a permanent-magnet synchronous motor (PMSM), but it has its own shortcomings caused by high torque ripple. Deadbeat-direct torque and flux control (DB-DTFC) is a new torque and flux method compared with DTC. However, the traditional DB-DTFC is often based on rotor-flux-oriented control. The reference voltage of the stator is computed in a rotor-flux-oriented coordinate system, and the solution involves solving quadratic equations, which will increase the burden of computational processing. To improve the computation of the reference voltages and the control performance, this paper proposes a new DB-DTFC algorithm and introduces its basic principles. First, the proposed DB-DTFC algorithm uses the forward Euler equation to solve the reference voltage in a stator-flux-oriented coordinate system. Second, the discrete mathematical model is used to predict the next control current to achieve deadbeat control. Third, the structural model of the proposed DB-DTFC is constructed. Finally, the simulation model of the proposed DB-DTFC algorithm is built with a MATLAB/Simulink platform. The simulation results prove that the proposed DB-DTFC algorithm can achieve better control performance in torque and flux control compared with the DTC algorithm and SVM-based direct torque and flux control (SVM-DTFC) algorithm. In particular, the torque index of DB-DTFC is reduced about 6% in a limited speed range in comparison with the DTC algorithm.

Keywords: permanent-magnet synchronous motor; deadbeat control; deadbeat-direct torque and flux control; space vector modulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3009/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3009/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3009-:d:797916

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3009-:d:797916