Optimal Scheduling Model of a Battery Energy Storage System in the Unit Commitment Problem Using Special Ordered Set
Insu Do and
Siyoung Lee
Additional contact information
Insu Do: Department of Energy & Electrical Engineering, Tech University of Korea (TUK), Siheung 15073, Korea
Siyoung Lee: Department of Energy & Electrical Engineering, Tech University of Korea (TUK), Siheung 15073, Korea
Energies, 2022, vol. 15, issue 9, 1-14
Abstract:
Nonlinear characteristics of a battery energy storage system (BESS) may cause errors in the stored energy between the operation plan and the actual operation. These errors may hinder the reliability of the power system especially in environments such as microgrids with limited power generation resources and high uncertainty. This study proposes a method to alleviate the occurrence of such errors in the charging/discharging scheduling process of the BESS by piecewise linearizing its nonlinear characteristics. Specifically, the stored energy in a BESS that changes nonlinearly according to the size of the charging/discharging power was modeled using the special ordered set of the type 2 (SOS2) method. The proposed model and the typical BESS-operation models with constant power conditioning system (PCS) input/output power efficiency were applied to the unit commitment (UC) problem in a microgrid environment, and the results were compared with the actual operation results. The proposed model operated similarly to the actual operation compared to the typical model, reducing the error in charging/discharging energy. Consequently, the proposed model was made cost-effective by reducing the cost of error correction and reduced the risk of deviating from operating range of the BESS. This study demonstrates that the proposed method can efficiently solve the operational problems caused by the nonlinear characteristics of BESS.
Keywords: battery energy storage system (BESS); microgrid; mixed-integer linear programming (MILP); piecewise linearization; special ordered set of type 2 (SOS2) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3079/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3079/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3079-:d:800084
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().