Influence of a Better Prediction of Thermal Satisfaction for the Implementation of an HVAC-Based Demand Response Strategy
Jongyeon Lim and
Wonjun Choi
Additional contact information
Jongyeon Lim: Department of Architectural Engineering, Kangwon National University, Kangwon-do 24341, Korea
Wonjun Choi: School of Architecture, Chonnam National University, Gwangju 61186, Korea
Energies, 2022, vol. 15, issue 9, 1-11
Abstract:
Building system operation faces the challenge of reducing energy use and implementing a demand response, which can be defined as a temporary modification in energy loads affecting dynamic energy price and reliability information. The heating, ventilation, and air-conditioning (HVAC) system in buildings provides an opportunity for implementing demand response strategies due to the thermal inertia in building zones. However, an HVAC-based demand response is not a prevalent strategy in actual facility management due to the lack of understanding among building operators of their facilities and occupants. Herein, we focus on developing a better understanding of the occupant side by obtaining a reliable prediction of occupants’ thermal satisfaction. We evaluate the prediction performance of a probabilistic model provided in our previous paper using a case study with a subset of the ASHRAE Global Thermal Comfort Database II. The influence of a better prediction of thermal satisfaction on the implementation of the HVAC-based demand response strategy is further discussed. The conventional method overestimates productivity deterioration due to changes in the thermal environment, making it challenging to implement an HVAC-based demand response strategy aggressively. A robust prediction model using a probabilistic approach can solve this problem, allowing building operators to adopt an aggressive stance for implementing a demand response. The results of this study offer fresh insight into the impact of a probabilistic model in the prediction of thermal satisfaction for establishing an HVAC-based demand response strategy.
Keywords: thermal comfort; thermal satisfaction; demand response strategy; thermal sensation; occupant performance; predicted mean vote (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3094/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3094/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3094-:d:800621
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().