EconPapers    
Economics at your fingertips  
 

A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios

Andre Leippi, Markus Fleschutz and Michael D. Murphy
Additional contact information
Andre Leippi: Department of Process, Energy and Transport Engineering, Munster Technological University, T12 P928 Cork, Ireland
Markus Fleschutz: Department of Process, Energy and Transport Engineering, Munster Technological University, T12 P928 Cork, Ireland
Michael D. Murphy: Department of Process, Energy and Transport Engineering, Munster Technological University, T12 P928 Cork, Ireland

Energies, 2022, vol. 15, issue 9, 1-22

Abstract: Integrating fleets of electric vehicles (EVs) into industrial applications with smart grids is an emerging field of important research. It is necessary to get a comprehensive overview of current approaches and proposed solutions regarding EVs with vehicle-to-grid and smart charging. In this paper, various approaches to battery modeling and demand response (DR) of EV charging in different decentralized optimization scenarios are reviewed. Modeling parameters of EVs and battery degradation models are summarized and discussed. Finally, optimization approaches to simulate and optimize demand response, taking into account battery degradation, are investigated to examine the feasibility of adapting the charging process, which may bring economic and environmental benefits and help to alleviate the increasing demand for flexibility. There is a lack of studies that comprehensively consider battery degradation for EV fleets in DR charging scenarios where corresponding financial compensation for the EV owners is considered. Therefore, models are required for estimating the level of battery degradation endured when EVs are utilized for DR. The level of degradation should be offset by providing the EV owner with subsidized or free electricity provided by the company which is partaking in the DR. This trade-off should be optimized in such a manner that the company makes cost savings while the EV owners are compensated to a level that is at least commensurate with the level of battery degradation. Additionally, there is a lack of studies that have examined DR in smart grids considering larger EV fleets and battery degradation in multi-criteria approaches to provide economic and environmental benefits.

Keywords: multi-objective optimization; electric vehicle fleet; electric vehicle charging; industrial demand response; vehicle-to-grid; smart grid; battery degradation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3227/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3227/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3227-:d:804392

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3227-:d:804392