EconPapers    
Economics at your fingertips  
 

Multi-Cell-to-Multi-Cell Battery Equalization in Series Battery Packs Based on Variable Duty Cycle

Shengyi Luo, Dongchen Qin, Hongxia Wu, Tingting Wang and Jiangyi Chen
Additional contact information
Shengyi Luo: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Dongchen Qin: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Hongxia Wu: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Tingting Wang: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Jiangyi Chen: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

Energies, 2022, vol. 15, issue 9, 1-21

Abstract: Batteries are widely used in our lives, but the inevitable inconsistencies in series-connected battery packs will seriously impact their energy utilization, cycle life and even jeopardize their safety in use. This paper proposes a balancing topology structure combining Buck-Boost circuit and switch array to reduce this inconsistency. This structure can realize multi-cell-to-multi-cell (MC2MC) battery balancing by controlling the switch array and having a fast balancing speed, easy expansion and few magnetic components. Then, the operation principle of the proposed balancing topology is analyzed, and the simulation model is verified. In addition, the effects of switching frequency and voltage difference on the equalization effect are further analyzed. The results show that the higher the switching frequency, the lower the time efficiency, but the higher the energy efficiency. The voltage difference significantly impacts the duty cycle, so it is absolutely necessary to introduce a variable duty cycle in the multi-cell-to-multi-cell equalization. Finally, eight series batteries are selected for simulation verification. The simulation results show that, compared with any-cell-to-any-cell (AC2AC) equalization, the time efficiency of multi-cell-to-multi-cell equalization is improved considerably, the energy efficiency is improved slightly, and the variance of the completed equalization is reduced, demonstrating the excellent performance of multi-cell-to-multi-cell equalization.

Keywords: lithium-ion battery; active equalization; multi-cell-to-multi-cell (MC2MC); variable duty cycle (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3263/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3263/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3263-:d:805601

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3263-:d:805601