Multi-Objective Optimal Scheduling of CHP Microgrid Considering Conditional Value-at-Risk
Shiduo Jia and
Xiaoning Kang
Additional contact information
Shiduo Jia: Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an 710000, China
Xiaoning Kang: Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an 710000, China
Energies, 2022, vol. 15, issue 9, 1-21
Abstract:
A combined heating and power (CHP) microgrid has high flexibility and economy, but the output of renewable energy is uncertain. Meanwhile, excessive flexible load adjustment in the demand response process will increase user dissatisfaction. In order to solve the above problems, this paper quantifies uncertainty with the conditional value-at-risk (CVaR) of relative disturbance. Additionally, a multi-objective optimal scheduling model that takes into account both the operating economy and the demand-side power consumption satisfaction is established. In order to solve the multi-objective mixed-integer nonlinear programming problem well, we propose an improved sparrow search algorithm (ISSA), which solves the problem that the sparrow search algorithm (SSA) is prone to low accuracy, insufficient in population diversity and easy to be trapped in local optimum. Combined with the non-dominated solution ranking method, ISSA has the ability of multi-objective optimization. Finally, simulation on a typical CHP microgrid is performed. The optimization results under different confidence levels and risk preference coefficients are compared and analyzed. When the risk preference coefficient is 0.1, 2 and 5, the minimum rotating reserve capacity is 75.17 kW, 82.83 kW, and 105.70 kW in the electric part and 40.08 kW, 59.89 kW, and 61.94 kW in the thermal part. The effectiveness of the proposed CVaR of relative disturbance is verified.
Keywords: CHP microgrid; conditional value-at-risk; sparrow search algorithm; multi-objective optimal (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3394/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3394/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3394-:d:809667
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().