EconPapers    
Economics at your fingertips  
 

An Accurate Method for Computing the Delay Margin in Load Frequency Control System with Gain and Phase Margins

Ashraf Khalil and Dina Shona Laila
Additional contact information
Ashraf Khalil: DTU Engineering Technology, Technical University of Denmark, DK-2750 Kongens Lyngby, Denmark
Dina Shona Laila: Electrical & Electronic Engineering Department, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei

Energies, 2022, vol. 15, issue 9, 1-21

Abstract: In traditional power systems, a dedicated communication channel is utilized to transfer the frequency measurements. With the deregulation and reconstruction of power systems, the information is sent through a shared communication network that makes time delays unavoidable in load frequency control (LFC) systems. With the existence of time delays, the LFC system becomes a standard time delay system that complicates the stability analysis and controller synthesis. In this paper, we present a new approach for analyzing the stability and determining the delay margin of the LFC system. By introducing a new variable, the transcendental equation is converted to nonlinear equations. To find the crossing frequencies, the nonlinear equations are solved, which is simpler than solving a set of linear matrix inequalities. A single-area and a multi-area LFC system are selected as case studies. The new method accurately determines the delay margin of the LFC system with phase and gain margin. The effect of the PI controller gains on the delay margin is also considered. A sensitivity analysis is conducted to discover the effects of the system parameters on the delay margin, and it is found that the primary loop parameters have a powerful influence on the delay margin. The stability region of the LFC system is also clearly identified through the proposed method. The influence of the system parameters on the stability region is studied. Compared to the published methods in the literature, the proposed method has a simpler structure while giving more accurate results.

Keywords: delay-dependent stability margin; delay margin; load frequency control (LFC); power systems stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3434/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3434/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3434-:d:810939

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3434-:d:810939