EconPapers    
Economics at your fingertips  
 

Dynamic Performance Analysis by Laboratory Tests of a Sustainable Prefabricated Composite Structural Wall System

Evangelia Georgantzia, Themistoklis Nikolaidis, Konstantinos Katakalos, Katerina Tsikaloudaki and Theodoros Iliadis
Additional contact information
Evangelia Georgantzia: Department of Civil Engineering, Institute of Metal Structures, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Themistoklis Nikolaidis: Department of Civil Engineering, Institute of Metal Structures, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Konstantinos Katakalos: Laboratory for Strength of Materials and Structures, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Katerina Tsikaloudaki: Laboratory of Building Construction & Building Physics, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Theodoros Iliadis: Iliadis Prefabricated Constructions, Prefabricated Construction Industry, 57001 Thessaloniki, Greece

Energies, 2022, vol. 15, issue 9, 1-30

Abstract: In recent decades, steel frames infilled with precast load-bearing walls have been successfully employed as lateral load-resisting structural systems in high-rise buildings. This is due to their structural efficiency as outer and major inner facades and to the higher construction speed of the building. This paper presents a detailed experimental investigation of a sustainable, prefabricated, composite structural wall system, using a representative test model named the Precast Concrete Steel Panel-Infilled Steel Frame (PCSP-ISF) in full-scale dimensions and subjected to in-plane cyclic loading. A series of experiments was conducted on critical structural specimens, including three-point bending, concentric axial compression, and diagonal compression, together with additional cycling loading tests on steel connection joint specimens, with the aim of validating the reliability and the structural response of the connections. The resulting test data and the observed failure mechanisms are discussed carefully to optimise the sustainable structural performance of the system. A theoretical approach for the evaluation of the shear capacity of the total frame system is also discussed to expand the experimental results for several numerical and experimental research cases. The failure mechanism of this module was formed by a combination of developed plastic hinges on the steel joints and diagonal cracks on the concrete panel. The obtained hysteretic behavior of the system at a parameter with major impact is mainly analysed and discussed. The outcomes indicate a satisfactory and sustainable seismic performance of the PCSP-ISF model, indicating that it can be a very promising lateral load-resisting system for earthquake-prone regions.

Keywords: prefabricated composite structural wall system; precast concrete steel panel; infilled steel frames; full-scale tests; dynamic performance; stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/9/3458/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/9/3458/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:9:p:3458-:d:811674

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3458-:d:811674