Design and Evaluation of Wireless Power Monitoring IoT System for AC Appliances
Huan-Liang Tsai (),
Le Phuong Truong and
Wei-Hung Hsieh
Additional contact information
Huan-Liang Tsai: Department of Computer Science and Information Engineering, Da-Yeh University, Changhua 515006, Taiwan
Le Phuong Truong: Department of Electrical and Electronics Engineering, Faculty of Mechatronics and Electronics Technology, Lac Hong University, Bien Hoa City 084, Vietnam
Wei-Hung Hsieh: Department of Electrical Engineering, Da-Yeh University, Changhua 515006, Taiwan
Energies, 2022, vol. 16, issue 1, 1-27
Abstract:
The paper is aimed to develop a wireless alternating current (AC) power monitoring module which features the advantage of cost-effectiveness and sufficient reliability for the proposed AC power monitoring Internet of Things (IoT) system. The novel wireless AC power monitoring module consists of both ZMPT101B voltage sensor and ACS712-20 current sensor; a 16-bit analog-to-digital (ADC) ADS1114 with I 2 C interface and WeMos D1 Mini Wi-Fi module were integrated for monitoring refrigerator and air conditioner appliances with the ratings of single-phase 110/220 V AC , respectively. First, both analog readings of V/I sensors for AC appliances are converted into data streams in compliance with I 2 C (inter-integrated circuit) protocol, and are forwarded to a WeMos D1 Mini Wi-Fi module for the corresponding values of instantaneous electric power and energy, power factor (pf), and frequency well programmed in the built-in ESP8266EX IoT-based microcontroller unit (MCU) based on the well-known AC power fundamentals. All of the important AC power parameters are sent to the ThingSpeak IoT platform through Wi-Fi network. The visualization of voltage, current, electric power and energy, pf, and frequency is illustrated in the ThingSpeak IoT platform. Both close agreement and confidence of the proposed AC power monitoring IoT system for both refrigerator and air conditioner are evaluated with two CM3286-1 AC Power Meters. Taking the commercialized CM3286-1 instrument as reference, the values of mean absolute percentage error (MAPE) for above six electrical parameter readings are all less than 2%. The evaluation results illustrate sufficient closeness of agreement and confidence for the proposed wireless AC power monitoring IoT system for in situ monitoring AC appliances with single-phase 110/220 V AC ratings. Furthermore, the cost of the proposed AC power monitoring module is less than 100 USD, which makes the novel module more cost-effective than commercialized AC power meters which generally cost over 1000 USD. The novelties of the work are the following: (1) the introduction of ADS1114 provides I 2 C interface directly for Wi-Fi module to reduce the capital cost of the proposed wireless AC power monitoring module; (2) the sufficient confidence of the proposed AC power monitoring IoT system has been validated with closeness of agreement as compared to the commercialized CM3286-1 AC Power Meters. These make the assessment action of environmental, social, and governance (EGS) for stakeholders much more feasible with the advantages of cost-effectiveness and sufficient confidence.
Keywords: wireless AC power monitoring module; WeMos D1 Mini; ThingSpeak IoT (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/1/163/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/1/163/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2022:i:1:p:163-:d:1013163
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().