Cobalt Nanocluster-Doped Carbon Micro-Spheres with Multilevel Porous Structure for High-Performance Lithium-Sulfur Batteries
Wenming Song,
Changmeng Xu,
Mai Li,
Zhi Cheng,
Yunjie Liu,
Peng Wang () and
Zhiming Liu ()
Additional contact information
Wenming Song: Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Changmeng Xu: Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Mai Li: Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Zhi Cheng: Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Yunjie Liu: Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Peng Wang: Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Zhiming Liu: Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Energies, 2022, vol. 16, issue 1, 1-12
Abstract:
Lithium-Sulfur batteries (Li-S batteries) have gained great interest in next-generation energy storage systems due to their high energy density and low-cost sulfur cathodes. There is, however, a serious obstacle in the commercial application of Li-S batteries due to the poor kinetics of the redox process at the sulfur cathode and the “shuttle effect” caused by lithium polysulfide (LiPSs). Herein, we report the synthesis of a sulfur cathode host material that can drastically inhibit the “shuttle effect” and catalyze the conversion of LiPSs by a simple electrostatic spray technique, namely, cobalt (Co) nanoclusters doped with N-containing porous carbon spheres (Co/N-PCSs). The results show that Co/N-PCSs has catalytic activity for the transformation of liquid LiPSs to solid Li 2 S and alleviates the notorious “shuttle effect.” This new sulfur cathode exhibits stable running for 300 cycles accompanied by a capacity of 650 mAh g −1 at a current density of 1 C, a capacity fading rate of 0.051% per cycle, and a Coulombic efficiency maintained at close to 100%. The results demonstrate that Co/N-PCSs offers the possibility of practical applications for high-performance Li-S batteries.
Keywords: cobalt nanoclusters; sulfur cathode; electrocatalysts; shuttle effect; lithium-sulfur batteries (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/1/247/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/1/247/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2022:i:1:p:247-:d:1015282
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().