Composting of Municipal Sewage Sludge and Lignocellulosic Waste: Nitrogen Transformations and Humic Substances Molecular Weight
Dorota Kulikowska () and
Katarzyna Bernat
Additional contact information
Dorota Kulikowska: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709 Olsztyn, Poland
Katarzyna Bernat: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709 Olsztyn, Poland
Energies, 2022, vol. 16, issue 1, 1-13
Abstract:
As increasing soil organic matter is considered one of the main strategies for reducing desertification in Europe, the production and use of high-quality composts has gained importance during the last decade. It is undisputed that the quantity and quality of humic substances (HS) and their fractions, i.e. fulvic acids (FA) and humic acids (HA) in compost are considered important indicators of compost maturity and chemical stability. Other important aspects are concentrations of macro- and micronutrients and heavy metals (HMs) that are introduced to the soil with mature compost. In this light, this study assessed the detailed characteristic of compost from municipal sewage sludge. Moreover, kinetic of organic matter (OM), and nitrogen transformations, therein nitrogen loss, were analysed. OM degradation proceeded according to first-order kinetics. In the bioreactor, the rate constant of OM removal and the rate of OM removal were 0.134 d −1 and 12.6 mg/(g d.m.d), respectively. In the windrow, these constants were 5.2-fold and 16.7-fold lower, respectively. In mature compost, the concentration of HS equaled 240.3 mg C/g OM (1.65-fold higher than in the feedstock) and the concentrations of HA and FA were 120.7 mg C/g OM and 119.6 mg C/g OM, respectively. In FA predominated those with a molecular weight in the range of 10–30 kDa (47.2%), FA with a molecular weight >100 kDa accounted for only 14.4%. In HA, however, fraction with the highest molecular weight (>100 kDa) accounted for more than half (51.2%), while the share of HA with a molecular weight <10 kDa was only 6.8%. During composting, nitrogen loss was observed, which resulted from NH 3 rather than N 2 O emission. In mature compost, organic nitrogen predominated (17.82 g/kg d.m.; ca. 92% of the overall nitrogen). The final concentrations of ammonia nitrogen and nitrate nitrogen were 0.23 and 1.12 g/kg d.m., respectively. The compost met the Polish requirements for the content of HMs (the HMs concentrations were as follows: Cd 1.85 mg/kg d.m., Pb 12.16 mg/kg d.m., Ni 11.05 mg/kg d.m., Cr 24.14 mg/kg d.m., Cu 104.24 mg/kg d.m., Zn 854 mg/kg d.m., Hg 0.12 g/kg d.m.).
Keywords: compost; bioreactor and windrow; macronutrients; heavy metals; humic substances; molecular weight (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/1/376/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/1/376/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2022:i:1:p:376-:d:1018609
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().