An Overview of Real Gas Brayton Power Cycles: Working Fluids Selection and Thermodynamic Implications
Costante Mario Invernizzi () and
Gioele Di Marcoberardino
Additional contact information
Costante Mario Invernizzi: Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
Gioele Di Marcoberardino: Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
Energies, 2023, vol. 16, issue 10, 1-20
Abstract:
This paper discusses and reviews the main real gas effects on the thermodynamic performance of closed Brayton cycles. Cycles with carbon dioxide as working fluids are taken as a reference and a comparison of the thermodynamic cycle efficiencies that are made with other possible working fluids (pure fluids and fluid mixtures). We fixed the reduced operating conditions, in optimal conditions, so that all working fluids had the same thermodynamic global performances. Therefore, the choice of the working fluid becomes important for adapting the cycle to the different technological requirements. The positive effects of the real gas properties in supercritical cycles were approximately maximal at reduced minimum cycle temperatures of about 1.01 to 1.05, with maximum to minimum cycle temperatures of about 2.2. The use of mixtures furthers widens the application of the field of closed Brayton cycles, thereby allowing a continuous variation in the critical temperature of the resulting working fluid and, in some cases, also making it possible to take the condensation with a significant further increase in the thermodynamic cycle efficiency. The paper also demonstrates the thermodynamic convenience of resorting to mixtures of carbon dioxide and inert gases. Extensive measurements of vapour–liquid equilibria and analysis of the thermal stability and material compatibility are essential for a practical and full use of the real gas Brayton cycles.
Keywords: closed thermodynamic cycles; Brayton cycles; real gas effects; carbon dioxide cycles; organic working fluids; mixtures in Brayton cycles (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/3989/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/3989/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:3989-:d:1142761
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().