EconPapers    
Economics at your fingertips  
 

Fuel Cell Trucks: Thermal Challenges in Heat Exchanger Layout

Christian Doppler () and Benedikt Lindner-Rabl
Additional contact information
Christian Doppler: Energy Efficiency & Human Centered Systems Department, Virtual Vehicle Research GmbH, 8010 Graz, Austria
Benedikt Lindner-Rabl: Energy Efficiency & Human Centered Systems Department, Virtual Vehicle Research GmbH, 8010 Graz, Austria

Energies, 2023, vol. 16, issue 10, 1-19

Abstract: Fuel cell powertrains have higher efficiencies compared to internal combustion engine powertrains, but—despite lower thermal losses—thermal requirements are noticeably higher. The commonly used Polymer Electrolyte Membrane Fuel Cell is highly sensitive to temperature deviations; hence specifications of coolant temperatures must be strictly observed. Furthermore, their working-temperature level is closer to ambient air, requiring a more efficient cooling system. This work focuses on medium-duty and heavy-duty truck segments. The aim is to provide a possible optimization guideline for cooling system developers to select an adequate heat exchanger for available air mass flows. This energetical and thermal layout process is based on fuel cell module information provided by Plastic Omnium New Energies Wels GmbH, firstly by simple steady-state calculations and secondly by transient vehicle system simulations. To define the system to the full extent, the analyses cover full-load operation, VECTO cycles, real-driving cycles, and the highest ambient temperatures. Finally, an optimized system is presented, matching the best trade-off between heat exchanger size and mass flows. Results show a linear and then exponential increase in heat exchanger size with soaring thermal requirements. Thus, with a well-defined thermal layout validated on the full vehicle level, the lowest possible component sizes are identified at which still harshest mission profiles can be completed.

Keywords: fuel cell electric truck; front-end HX; thermal management; heat exchanger sizing; high voltage fan (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4024/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4024/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4024-:d:1144309

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4024-:d:1144309