EconPapers    
Economics at your fingertips  
 

Thermo-Electro-Fluidic Simulation Study of Impact of Blower Motor Heat on Performance of Peltier Cooler for Protective Clothing

Kwon Joong Son ()
Additional contact information
Kwon Joong Son: Department of Mechanical and Design Engineering, Hongik University, Seoul 30016, Republic of Korea

Energies, 2023, vol. 16, issue 10, 1-16

Abstract: The necessity for portable cooling devices to prevent thermal-related diseases in workers wearing protective clothing in hot outdoor weather conditions, such as COVID-19 quarantine sites, is increasing. Coolers for such purposes require a compact design and low-power consumption characteristics to maximize wearability and operating time. Therefore, a thermoelectric device based on the Peltier effect has been widely used rather than a relatively bulky system based on a refrigeration cycle accompanying the phase change of a refrigerant. Despite a number of previous experimental and numerical studies on the Peltier cooling device, there remains much research to be conducted on the effect and removal of motor-related internal heat sources deteriorating the cooling performance. Specifically, this paper presents thermo-electro-fluidic simulations on the impact of heat from an air blower on the coefficient of performance of a Peltier cooler. In addition, a numerical study on the outcome of heat source removal is also evaluated and discussed to draw an improved design of the cooler in terms of cooling capacity and coefficient of performance. The simulation results predicted that the coefficient of performance could be raised by 10.6% due to the suppression of heat generation from a blower motor. Accordingly, the cooling capacity of the specific Peltier cooler investigated in this study was expected to be considerably improved by 80.6% from 4.68 W to 8.45 W through the design change.

Keywords: thermoelectric cooling; Peltier effect; multiphysics simulation; computational fluid dynamics; conjugate heat transfer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4052/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4052/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4052-:d:1145641

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4052-:d:1145641