EconPapers    
Economics at your fingertips  
 

Numerical Simulation of MHD Natural Convection and Entropy Generation in Semicircular Cavity Based on LBM

Zihao Yuan, Yinkuan Dong and Zunlong Jin ()
Additional contact information
Zihao Yuan: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Yinkuan Dong: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Zunlong Jin: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

Energies, 2023, vol. 16, issue 10, 1-17

Abstract: To study the natural convection and entropy generation of a semicircular cavity containing a heat source under the magnetic field, based on the single-phase lattice Boltzmann method, a closed cavity model with a heat source in the upper semicircular (Case 1) and lower semicircular cavity (Case 2) is proposed. The cavity is filled with CuO-H 2 O nanofluid, and the hot heat source is placed in the center of the cavity. The effects of Rayleigh number, Hartmann number and magnetic field inclination on the average Nusselt number and the entropy generation of the semicircular cavity are studied. The results show that the increase in the Rayleigh number can promote the heat transfer performance and entropy generation of nanofluids. When the Hartmann number is less than 30, the increasing function of the Hartmann number at the time of total entropy generation reaches its maximum when the Hartmann number reaches 30. As the Hartmann number increases, the total entropy generation is the decreasing function of the Hartmann number. The larger the Hartmann number, the greater the influence of the magnetic field angle system. Under the same Hartman number, with the increase in the Rayleigh number, the flow function of Case 2 increases by 29% compared with that of Case 1. The average Nusselt number of heat source surfaces in Case 2 increases by 5.77% compared with Case 1.

Keywords: lattice Boltzmann method; natural convection; heat source; semicircular cavity; nanofluids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4055/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4055/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4055-:d:1145674

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4055-:d:1145674