Stochastic Programming Model Integrating Pyrolysis Byproducts in the Design of Bioenergy Supply Chains
Kolton Keith and
Krystel K. Castillo-Villar ()
Additional contact information
Kolton Keith: Mechanical Engineering Department and Texas Sustainable Energy Research Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Krystel K. Castillo-Villar: Mechanical Engineering Department and Texas Sustainable Energy Research Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Energies, 2023, vol. 16, issue 10, 1-17
Abstract:
Biomass is an abundant resource for energy production and it has gained attention as a mainstream option to meet increasing energy demands. Pyrolysis has been one of the most prevalent thermochemical processes for biomass conversion. In the pyrolysis process, the biomass decomposes into three byproducts: bio-oil (60–75%), biochar (15–25%), and syngas (10–20%), depending on the feedstock and its composition. The energy required to convert the biomass varies depending on the levels of cellulose, hemicellulose, and lignin. This work proposes a novel two-stage stochastic model that designs an efficient biomass supply chain mindful of the trade-offs between pyrolysis byproducts (bioethanol and biochar). Remarkably, the model integrates biomass quality-related costs associated with moisture and ash content such as the energy consumption of preprocessing equipment and boiler maintenance due to excess ash. Biomass quality directly affects the production yield as well as the total cost of production and distribution. The results from our case study indicate a shortage of biomass from the suppliers to fulfill the demand for biochar from the power plants and bioethanol from the cities. Furthermore, the bioethanol price has the most impact on the total supply chain according to our sensitivity analysis.
Keywords: optimization; stochastic programming; supply chains; biofuels; biomass (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4070/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4070/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4070-:d:1146163
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().