Coastal Depositional Responses to Relative Sea-Level Rise: Insights from a Superimposed Sandstone–Shale–Coal Reservoir in the Linxing Gas Field, China
Jincheng Liu,
Yan Zhang and
Jingqiang Tan ()
Additional contact information
Jincheng Liu: Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Yan Zhang: Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
Jingqiang Tan: Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Energies, 2023, vol. 16, issue 10, 1-27
Abstract:
The Ximing Sandstone-to-No. 9 Coal succession of the Taiyuan Formation in the Linxing gas field records a complex internal architecture of a transgressive succession developed in the western coast of the late Pennsylvanian North China epeiric sea. Facies and sequence stratigraphic analyses reveal its depositional evolution from fluvial channels through fluvial-dominated and tide-influenced inner estuaries to tide-dominated estuaries and finally to wave-dominated barrier lagoons. The evolution from fluvial- to tide-dominated deposition has been ascribed to the funnel-shaped valley coupled with an increased tidal prism induced by the upstepping and backstepping shoreline. The evolution from tide- to wave-dominated deposition has been ascribed to the wide North China epeiric seaway lacking local coastline irregularities after the incised-valley fill that provided sufficient fetch for the occurrence of large storm waves. Grain-size analysis reveals the relative importance of traction, saltation, dispersed suspension, and flocculated suspension in the development of the transgressive estuarine to lagoonal deposits. This study not only contributes to a proper understanding of coastal depositional response to the relative sea-level rise but also provides a context within which to interpret the symbiotic relationship of the superimposed sandstone–shale–coal reservoirs and predict the distribution of favorable unconventional gas production formation.
Keywords: Linxing gas field; Taiyuan formation; superimposed gas reservoirs; symbiotic relationship; coastal evolution; depositional processes (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4144/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4144/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4144-:d:1149154
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().