Implementation Strategy of Test Facility Based on Auto-Transformer for LVRT/HVRT Evaluation of Large-Scale Wind Turbine
Byungki Kim (),
Yang-Hyun Nam,
Kyung-Sang Ryu and
Dae-Jin Kim ()
Additional contact information
Byungki Kim: Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Jeju Specific Self-Governing Province, Republic of Korea
Yang-Hyun Nam: Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Jeju Specific Self-Governing Province, Republic of Korea
Kyung-Sang Ryu: Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Jeju Specific Self-Governing Province, Republic of Korea
Dae-Jin Kim: Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Jeju Specific Self-Governing Province, Republic of Korea
Energies, 2023, vol. 16, issue 10, 1-25
Abstract:
In accordance with South Korea’s recent 2030 Carbon Neutral Plan, an 8GW offshore wind farm is planned for construction in the South-west Sea. Therefore, it is expected that large-scale wind turbines will be installed, and these turbines must operate stably, even when there are instantaneous voltage fluctuations in the power system. The grid code is described for the low-voltage-ride-through (LVRT) and high-voltage-ride-through (HVRT) functions, and a test facility that can perform both LVRT and HVRT tests is essential. In the case of LVRT/HVRT test facilities developed by the existing RLC (impedance component) method, it may be difficult to test large-scale wind turbines due to problems such as power quality, frequent failures and narrow short-circuit capacity ranges. Therefore, to solve such problems, this paper proposes an LVRT/HVRT test facility of the autotransformer type, which is capable of outputting the desired voltage range by changing the wiring method and tap position. Specifically, in order to implement the test facility of the autotransformer type, which is able to output the desired voltage range by changing the wiring method and tap according to the LVRT/HVRT test status, this paper presents an impedance determination algorithm (two-step layer impedance determination algorithm) of auto-transformer based on the fault-current analysis and operation strategy at a real LVRT/HVRT testing evaluation facility.
Keywords: low voltage ride through; high voltage ride through; wind turbine auto-transformer; implementation strategy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4194/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4194/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4194-:d:1151017
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().