An Overall Linearized Modeling Method and Associated Delay Time Model for the PV System
Xianping Zhu,
Shaowu Li () and
Jingxun Fan
Additional contact information
Xianping Zhu: College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
Shaowu Li: College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
Jingxun Fan: College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
Energies, 2023, vol. 16, issue 10, 1-37
Abstract:
There are some significant nonlinearity and delay issues in photovoltaic (PV) system circuits. Therefore, it is very difficult for the existing classic linear control theories to be used in PV systems; this hinders the design of the optimal energy dispatch by considering real-time generation power forecasting methods. To solve this problem, an overall linearized model with variable weather parameters (OLM-VWP) of the PV system is proposed on the basis of small-signal modeling. Meanwhile, a corresponding simplified overall linearized model with variable weather parameters (SOLM-VWP) is presented. The SOLM-VWP avoids analyzing delay characteristics of the complex high-order PV system. Moreover, it can reduce hardware cost and computation time, which makes analysis of the transient performance index of the PV system more convenient. In addition, on the basis of the OLM-VWP and SOLM-VWP, a delay-time model with variable weather parameters (DTM-VWP) of the PV system is also proposed. The delay time of the system can be accurately calculated using the DTM-VWP, and it provides a preliminary theoretical basis for carrying out real-time energy scheduling of the PV system. Finally, simulations are implemented using the MATLAB tool, and experiments are conducted. The results verify that the proposed linearization model of the PV system is accurate and reasonable under varying irradiance and temperature conditions. Meanwhile, the results also verify that the proposed SOLM-VWP and DTM-VWP of the PV system are feasible. Additionally, the results show that some transient performance indexes (delay time, rise time, settling time, and peak time) can be solved by means of equations when the circuit parameters and real-time weather parameters are given.
Keywords: photovoltaic system; small-signal modeling; overall linearization; delay-time model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4202/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4202/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4202-:d:1151284
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().