Lightning Protection of Floating Photovoltaic Power Plants—Simulation Analysis of Sample Solutions
Konrad Sobolewski () and
Emilia Sobieska
Additional contact information
Konrad Sobolewski: Faculty of Electrical Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
Emilia Sobieska: Faculty of Electrical Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
Energies, 2023, vol. 16, issue 10, 1-16
Abstract:
Photovoltaic power plants are gaining in popularity and availability every year, resulting in a massive increase in their number and size. However, each such investment involves allocating large land areas, the cost of which may be high. For this reason, there has been an increasing interest in the use of post-industrial wastelands in the form of artificial water reservoirs which often occupy large areas. Because their use as places of recreation can be dangerous for people, it is a cheap alternative for the foundation of a floating photovoltaic power plant. In addition, it has an advantage over the land version in that it is possible to produce a more significant amount of energy by using the sun’s rays reflected from the water’s surface. Despite these undeniable advantages, such a structure poses several technological challenges. This article focuses on the aspect of lightning protection, which is particularly important due to the structure’s location in the open, and also a specific ground type with noticeably different mechanical and electrical characteristics than typical soil. Aspects such as the lightning hazard, arrangement of lightning rods, down conductors, lightning equipotential bonding, and various earthing configurations are discussed. The presented analysis is based on geometric models and simulations made in the Ansys/Maxwell 3D environment and is supplemented with calculations in Matlab/Simulink.
Keywords: lightning protection; overvoltage protection; floating photovoltaic power plant; grounding; modeling; simulations; Ansys; Matlab; earthing; sustainable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4222/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4222/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4222-:d:1151854
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().