Capacity Degradation and Aging Mechanisms Evolution of Lithium-Ion Batteries under Different Operation Conditions
Guoqing Luo,
Yongzhi Zhang () and
Aihua Tang ()
Additional contact information
Guoqing Luo: College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
Yongzhi Zhang: College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
Aihua Tang: School of Vehicle Engineering, Chongqing University of Technology, Chongqing 400054, China
Energies, 2023, vol. 16, issue 10, 1-18
Abstract:
Since lithium-ion batteries are rarely utilized in their full state-of-charge (SOC) range (0–100%); therefore, in practice, understanding the performance degradation with different SOC swing ranges is critical for optimizing battery usage. We modeled battery aging under different depths of discharge (DODs), SOC swing ranges and temperatures by coupling four aging mechanisms, including the solid–electrolyte interface (SEI) layer growth, lithium (li) plating, particle cracking, and loss of active material (LAM) with a P2D model. Additionally, the mechanisms causing accelerated capacity to drop near a battery’s end of life (EOL) were investigated systematically. The results indicated that when the battery operated with a high SOC range, the capacity was more prone to accelerated degradation near the EOL. Among the four degradation mechanisms, li plating was mainly sensitive to the operation temperature and SOC swing ranges, while the SEI growth was mainly sensitive to temperature. Furthermore, there was an inhibitory interaction between li plating and SEI growth, as well as positive feedback between LAM and particle cracking during battery aging. Additionally, we discovered that the extremely low local porosity around the anode separator could cause the ‘knee point’ of capacity degradation.
Keywords: battery aging modeling; aging mechanisms evolution; capacity degradation; aging mechanisms interaction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4232/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4232/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4232-:d:1152123
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().