Modeling Thermal Radiation in Combustion Environments: Progress and Challenges
Sandip Mazumder () and
Somesh P. Roy
Additional contact information
Sandip Mazumder: Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
Somesh P. Roy: Department of Mechanical Engineering, Marquette University, Milwaukee, WI 53233, USA
Energies, 2023, vol. 16, issue 10, 1-40
Abstract:
Modeling thermal radiation in combustion environments can be extremely challenging for two main reasons. First, the radiative transfer equation (RTE), which is the cornerstone of modeling radiation in such environments, is a five-dimensional integro-differential equation. Second, the absorption and scattering coefficients of molecular gases and particulates prevalent in combustion environments oscillate strongly with the wavenumber (or wavelength), i.e., the medium is strongly nongray, requiring the solution of the RTE for a large number of wavenumbers. This article reviews the progress that has been made in this area to date with an emphasis on the work performed over the past three decades. Progress in both deterministic and stochastic (Monte Carlo) solutions of the RTE is reviewed, in addition to the review of the treatment of the spectral properties of gases, soot, and fuel droplets that dominate combustion environments, i.e., spectral or nongray models. The application of the various state-of-the-art nongray models and RTE solution methods to flames (particularly turbulent), fires, combustors, and other combustion systems are summarized along with a critical discussion of the pros and cons of the models and methods. Finally, the challenges that remain in modeling thermal radiation in combustion systems are highlighted and future outlooks are shared.
Keywords: radiation; combustion; nongray; flame; TRI; RTE solver; Monte Carlo; FSK (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/10/4250/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/10/4250/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:10:p:4250-:d:1152762
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().