EconPapers    
Economics at your fingertips  
 

CFD Prediction of a Double Impulse Burner for Glass Furnaces

Carlo Cravero, Alessandro Lamberti () and Luca Poggio
Additional contact information
Carlo Cravero: Dipartimento di Ingegneria Meccanica, Università degli Studi di Genova, 16145 Genoa, Italy
Alessandro Lamberti: Dipartimento di Ingegneria Meccanica, Università degli Studi di Genova, 16145 Genoa, Italy
Luca Poggio: Dipartimento di Ingegneria Meccanica, Università degli Studi di Genova, 16145 Genoa, Italy

Energies, 2023, vol. 16, issue 11, 1-17

Abstract: Recently, growing environmental awareness has radically changed the way the problems and priorities of industry are dealt with. Energy issues have become an issue of primary importance, both in terms of consumption and polluting emissions. However, for the green transition to happen, the first step is to have a deeper knowledge of the phenomena involved in processes with a special focus on combustion. The glass industry is one of the most energy-intensive since a temperature of over 1400 °C is required to keep glass molten, with a large consumption of natural gas used for combustion. A fundamental element to control the process is the burner. In this study, the CFD (Computational Fluid Dynamics) prediction of the internal streams repartition and the velocity profile at the exit, at different geometrical setups and operating conditions, of an industrial burner for glass furnaces is presented, with the aim of developing a surrogate model to provide these two important quantities quickly. The study of the repartition of the mass flow inside a double impulse burner and the subsequential velocity profile outside the burner is a novelty in the glass industry. The CFD prediction of the operating conditions is a crucial aspect because it is an essential boundary condition for the simulation of the reactive process from the diffusive flame found in glass furnaces. Different operating and geometrical conditions of the burner have been tested using Ansys CFX code, and results (velocity profile and mass flow repartition) have been organized in surrogate models. Results showed that the repartition of the fuel streams is mainly influenced by the position of the barrel, while the total flow rate is strongly influenced by the total inlet pressure. The internal flow varies from 20% to 50% of the total mass flow inside the burner, while the velocity magnitude outside the burner varies from 80 to 300 m/s approximately. The reconstruction of velocity profiles at the exit of the burners with surrogate models showed an acceptable match with numerical simulations.

Keywords: double impulse burner; CFD; glass furnace; surrogate model; response surface method (RSM) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/11/4275/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/11/4275/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:11:p:4275-:d:1153781

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4275-:d:1153781