EconPapers    
Economics at your fingertips  
 

A MILP Model for Optimal Conductor Selection and Capacitor Banks Placement in Primary Distribution Systems

Luis A. Gallego Pareja, Jesús M. López-Lezama () and Oscar Gómez Carmona
Additional contact information
Luis A. Gallego Pareja: Department of Electrical Engineering, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil
Jesús M. López-Lezama: Research Group in Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
Oscar Gómez Carmona: Facultad de Tecnología, Universidad Tecnológica de Pereira, Cr 27 No 10-02, Pereira 660003, Colombia

Energies, 2023, vol. 16, issue 11, 1-21

Abstract: Power distribution systems (PDS) are the infrastructure and equipment used to distribute electricity from the transmission system to end-users, such as homes and businesses. PDS are usually designed to operate in a radial mode, where power flows from one substation to the end user through a series of feeders. The extension of distribution lines to attend new customers along with the growing demand for electricity result in increased energy losses and voltage reductions. Various solutions have been proposed to solve these issues, such as selecting the optimal set of conductors, optimizing the placement of voltage regulators, using capacitor banks, reconfiguring the distribution system, and implementing distributed generation. A well-known approach for reducing energy losses and enhancing voltage profile is the optimal conductor selection (OCS). While this can be beneficial, it may not be sufficient to fully reduce technical losses and improve the system voltage profile; therefore, it must be combined with other strategies. This paper presents a new approach that combines the OCS with the optimal placement of capacitor banks (OPCB) to minimize technical losses and improve the voltage profile in PDS. The main contribution of this paper is the integration of these two problems into a single mixed integer linear programming (MILP) model, therefore guaranteeing the achievement of globally optimal solutions. Three test systems of 27, 69, and 85 buses were used to illustrate the effectiveness of the proposed modeling approach. The results indicate that the combination of OCS and OPCB effectively minimizes energy losses and enhances the voltage profile. In all cases, the solutions obtained by the proposed MILP approach were better than those previously reported through metaheuristics for the combined OCS and OPCB problem.

Keywords: primary distribution systems; mixed-integer linear model; optimal conductors selection; optimal placement capacitor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/11/4340/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/11/4340/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:11:p:4340-:d:1156159

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4340-:d:1156159