EconPapers    
Economics at your fingertips  
 

Study of Ash Sintering Temperature and Ash Deposition Behavior during Co-Firing of Polish Bituminous Coal with Barley Straw Using Non-Standard Tests

Karol Król, Dorota Nowak-Woźny () and Wojciech Moroń
Additional contact information
Karol Król: Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wroclaw, Poland
Dorota Nowak-Woźny: Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wroclaw, Poland
Wojciech Moroń: Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wroclaw, Poland

Energies, 2023, vol. 16, issue 11, 1-15

Abstract: The need to reduce CO 2 emissions forces the use of biomass as a fuel in the conventional energy conversion process implemented by combustion. Burning biomass alone can be problematic because of the high potential for slugging and fouling on boiler heating surfaces. Therefore, co-firing of biomass with coal is used. This article presents the results of a study of biomass blends of barley, straw, and hard coal biomass from the Polish Makoszowy mine. The sintering of ash from biomass-coal blends was studied by experimental non-standard methods, such as the fracture stress and the pressure drop test. The results were confirmed with the result of thermodynamic modeling using FactSage 8.0 software. Additionally, ash deposition tests were performed in a 3.5 m boiler. The tests conducted showed a significant effect of the addition of biomass to hard coal on the formation of ash deposits on the heating surfaces of the boiler. In addition, the usefulness of non-standard methods in the assessment of the degree of fouling and slugging hazard was confirmed.

Keywords: FactSage analysis; coal; biomass; sintering; pressure drop method; mechanical method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/11/4424/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/11/4424/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:11:p:4424-:d:1159966

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4424-:d:1159966