EconPapers    
Economics at your fingertips  
 

Energy and Environmental Analysis of Renewable Energy Systems Focused on Biomass Technologies for Residential Applications: The Life Cycle Energy Analysis Approach

Effrosyni Giama, Elli Kyriaki, Athanasios Papaevaggelou and Agis Papadopoulos
Additional contact information
Effrosyni Giama: Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University, 54124 Thessaloniki, Greece
Elli Kyriaki: Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University, 54124 Thessaloniki, Greece
Athanasios Papaevaggelou: Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University, 54124 Thessaloniki, Greece
Agis Papadopoulos: Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University, 54124 Thessaloniki, Greece

Energies, 2023, vol. 16, issue 11, 1-22

Abstract: Sustainability and resilience are major challenges for the building sector in order to meet energy efficiency and low carbon emissions goals. Based on the defined and quantified targets of the EU climate change policy, Renewable Energy Systems (RESs) are among the top-priority measures for accomplishing the target of decarbonization in buildings. Nevertheless, the choice of the type of RES is not a one-dimensional problem, and the optimal combination may not be unique. The aim of this paper is the energy and environmental evaluation of renewable energy technologies with emphasis on biomass and solar thermal systems for heating applications in residential buildings. More specifically, and aiming at the maximum possible contribution of renewable energy sources in the total final energy consumption for the needs of zero energy buildings, different scenarios are presented based on a Life Cycle Energy Analysis (LCEA) approach. The methodology is based on quantifying the environmental impacts (midpoint analysis), as well as endpoint analysis, in order to define the impact on human health, ecosystem damage, and resource depletion. The LCEA has been conducted, supported by the SimaPro tool, ensuring the environmental impact assessment result. A combination of RES technologies based on solar and biomass are examined and compared to conventional fossil fuel heating systems according to technical, energy, and environmental criteria. Finally, the energy system technologies were compared in correlation to a building’s thermal insulation level. The first set of simulations fulfilled the minimum thermal insulation requirements, according to the national energy performance regulation, whilst the second set of simulations was based on increased levels of insulation. The point of this analysis was to correlate the impact of thermal insulation to RES technologies’ contribution. The results determined that the best available energy solution, focusing on technical and environmental criteria, is the combination of biomass and solar thermal systems for covering the heating processes in residential buildings. More specifically, the combined biomass–solar system has a lower overall environmental impact, due to the reduction in gaseous pollutant emissions, as well as the reduction in the amount of used fuel. The reduction in the total environmental impact amounts to a percentage of approximately 43%.

Keywords: Renewable Energy Systems; biomass technologies; solar thermal systems; Life Cycle Energy Analysis; energy efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/11/4433/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/11/4433/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:11:p:4433-:d:1160214

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4433-:d:1160214