Review on Salt Hydrate Thermochemical Heat Transformer
Isye Hayatina,
Amar Auckaili and
Mohammed Farid ()
Additional contact information
Isye Hayatina: Chemical and Materials Engineering Department, University of Auckland, Auckland 1010, New Zealand
Amar Auckaili: Chemical and Materials Engineering Department, University of Auckland, Auckland 1010, New Zealand
Mohammed Farid: Chemical and Materials Engineering Department, University of Auckland, Auckland 1010, New Zealand
Energies, 2023, vol. 16, issue 12, 1-23
Abstract:
The industrial sector utilizes approximately 40% of global energy consumption. A sizeable amount of waste energy is rejected at low temperatures due to difficulty recovering with existing technologies. Thermochemical heat transformers (THT) can play a role in recovering low-temperature industrial waste heat by storing it during high supply and discharging it on demand at a higher temperature. Thus, THT will enable waste heat reintegration into industrial processes, improving overall energy efficiency and lowering greenhouse gas emissions from the industrial sector. Salt hydrate is a promising thermochemical material (TCM) because it requires a low charging temperature which can be supplied by waste heat. Furthermore, its non-toxic nature allows the implementation of a simpler and less costly open system. Despite extensive research into salt hydrate materials for thermochemical energy storage (TCES) applications, a research gap is identified in their use in THT applications. This paper aims to provide a comprehensive literature review of the advancement of THT applications, particularly for systems employing salt hydrates material. A discussion on existing salt hydrate materials used in the THT prototype will be covered in this paper, including the challenges, opportunities, and suggested future research works related to salt hydrate THT application.
Keywords: thermochemical heat transformer (THT); thermochemical material (TCM); thermochemical energy storage (TCES); salt hydrate; thermal upgrade; temperature lift (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/12/4668/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/12/4668/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:12:p:4668-:d:1169494
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().