EconPapers    
Economics at your fingertips  
 

Aerodynamic Study of MotoGP Motorcycle Flow Redirectors

Borja González-Arcos and Pedro Javier Gamez-Montero ()
Additional contact information
Borja González-Arcos: Department of Fluid Mechanics, Universitat Politecnica de Catalunya, Campus Terrassa, Colom 11, 08222 Terrassa, Spain
Pedro Javier Gamez-Montero: Department of Fluid Mechanics, Universitat Politecnica de Catalunya, Campus Terrassa, Colom 11, 08222 Terrassa, Spain

Energies, 2023, vol. 16, issue 12, 1-32

Abstract: In recent years, the introduction of aerodynamic appendages and the study of their aerodynamic performance in MotoGP motorcycles has increased exponentially. It was in 2016, with the introduction of the single electronic control unit, that the search began for alternative methods to generate downforce that were not solely reliant on the motorcycle’s electronics. Since then, all types of spoilers, fins and wings have been observed on the fairings of MotoGP motorcycles. The latest breakthrough has been Ducati’s implementation of flow redirectors at the front and bottom of the fairing. The aim of the present study was to test two hypotheses regarding the performance of the flow redirector by responding to the corresponding research questions on its aerodynamic function and advantage, both in the straight and leaning position. In a preanalytical cognitive act, a visual study of MotoGP motorcycles was conducted and, accordingly, a 3D-CAD model was designed ad hoc in compliance with the FIM 2022 regulations for both the motorcycle and flow redirector. Numerical simulations using OpenFOAM software were then carried out for the aerodynamic analysis. Finally, the Taguchi methodology was applied as an effective simulation-based strategy to narrow down the combinations of geometric parameters, reduce the solution space, optimize the number of simulations, and statistically analyse the results. The aerodynamic performance of the flow redirector is highly dependent on the inlet flow when the motorcycle is in a straight position. The results indicate that all models with leaned motorcycle bearing the flow redirector, regardless of geometry, have an aerodynamic advantage, as the appendage generates downforce with a minimal increment of the drag coefficient. In a cornering situation, the flow separator in the flow redirector reduces the disadvantageous influence of wheel rotation on the “diffuser effect” by drawing the flow towards the outside of the curve, creating extra downforce.

Keywords: motorbike; aerodynamic appendages; CFD; OpenFOAM; Taguchi method; flow structures; simulation-based design (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/12/4793/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/12/4793/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:12:p:4793-:d:1174183

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4793-:d:1174183