A GPU-Accelerated Particle Advection Methodology for 3D Lagrangian Coherent Structures in High-Speed Turbulent Boundary Layers
Christian Lagares and
Guillermo Araya ()
Additional contact information
Christian Lagares: HPC and Visualization Lab, Department of Mechanical Engineering, University of Puerto Rico at Mayaguez, Mayagüez 00682, Puerto Rico
Guillermo Araya: Computational Turbulence and Visualization Lab, Klesse College of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX 78249, USA
Energies, 2023, vol. 16, issue 12, 1-33
Abstract:
In this work, we introduce a scalable and efficient GPU-accelerated methodology for volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the analysis of Lagrangian coherent structures (LCS) in large-scale direct numerical simulation (DNS) datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into their behavior in various flow conditions. Our novel owning-cell locator method enables efficient constant-time cell search, and the algorithm draws inspiration from classical search algorithms and modern multi-level approaches in numerical linear algebra. The proposed method is implemented for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve modularity and extensibility, resulting in consistent parallel efficiency across different architectures. Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic proportional to the Mach number, and their inclination angle varies along the streamwise direction. We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with structures retaining coherency along both spanwise and streamwise directions. Additionally, we demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear upsampler, preserving general trends with only 10% of the required storage. In summary, we present a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable across various domains, requiring efficient search algorithms in large, structured domains. While this article focuses on the methodology and its application to LCS, an in-depth study of the physics and compressibility effects in LCS candidates will be explored in a future publication.
Keywords: LCS; GPU-accelerated; particle advection; distributed memory algorithms; high-speed turbulent boundary layers; DNS (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/12/4800/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/12/4800/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:12:p:4800-:d:1174550
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().