Electrochemically Structured Copper Current Collectors for Application in Energy Conversion and Storage: A Review
Mario Kurniawan and
Svetlozar Ivanov ()
Additional contact information
Mario Kurniawan: Electrochemistry and Electroplating Group, Department of Electrical Engineering and Information Technology, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
Svetlozar Ivanov: Electrochemistry and Electroplating Group, Department of Electrical Engineering and Information Technology, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
Energies, 2023, vol. 16, issue 13, 1-33
Abstract:
Copper current collectors (Cu CCs) impact the production technology and performance of many electrochemical devices by their unique properties and reliable operation. The efficiency of the related processes and the operation of the electrochemical devices could be significantly improved by optimization of the Cu CCs. Metallic Cu plays an important role in electrochemical energy storage and electrocatalysis, primarily as a conducting substrate on which the chemical processes take place. Li nucleation and growth can be influenced by the current collector by modulating the local current density and Li ion transport. For example, the commonly used planar Cu CC does not perform satisfactorily; therefore, a high number of different modifications of Cu CCs have been proposed and reported in the literature for minimizing the local current density, hindering Li dendrite formation, and improving the Coulombic efficiency. Here, we provide an updated critical overview of the basic strategies of 3D Cu CC structuring, methodologies for analyzing these structures, and approaches for effective control over their most relevant properties. These methods are described in the context of their practical usefulness and applicability in an effort to aid in their easy implementation by research groups and private companies with established traditions in electrochemistry and plating technology. Furthermore, the current overview could be helpful for specialists with experience in associated fields of knowledge such as materials engineering and surface finishing, where electrochemical methods are frequently applied. Motivated by the importance of the final application of Cu CCs in energy storage devices, this review additionally discusses the relationship between CC properties and the functional parameters of the already-implemented electrodes.
Keywords: copper; current collector; Li ion battery; energy storage; 3D structuring; AAO template; dynamic hydrogen bubble template (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/4933/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/4933/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:4933-:d:1178738
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().