A One-Dimensional Numerical Model for High-Performance Two-Stroke Engines
Fernando Ortenzi () and
Andrea Bossaglia
Additional contact information
Fernando Ortenzi: ENEA—Italian Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
Andrea Bossaglia: IAME Karting, 24040 Zingonia di Verdellino, Italy
Energies, 2023, vol. 16, issue 13, 1-24
Abstract:
Computer software that simulates the thermodynamic and gas dynamic properties of internal combustion engines can play a significant role in the design and optimization of internal combustion engines. In the present work, a quasi-dimensional numerical model for two-stroke engines is presented. Particular attention was paid to reporting in-cylinder models, combustion (turbulent with flame development and flame–wall interaction), and turbulence ( K-k- ϵ model), with the addition of tumble- and squish-generated turbulence that is quite common in such engines. The aim was to reduce the role of the calibration constants, which are fundamental for correlating the models with the experiments, and relations for calculating the tumble ratio and turbulent scales were reported. A one-dimensional model for manifolds is also presented (solving the Euler equations), using the second-order Roe Riemann solver with some improvements, paying particular attention to the source terms, such as area variation. Additionally, a new approach to the end-pipe boundaries, which would reduce the mass conservation error, is reported. The engines tested were two kart two-stroke engines, used for racing purposes: the IAME X30 engine and the IAME Screamer III KZ engine. A comparison between the model results and the experimental data was made, and good accordance was observed, with a root mean square error of about 0.5 kW and providing good accuracy in evaluating changes, such as the combustion chamber squish area and the exhaust pipe length.
Keywords: two-stroke engines; combustion; turbulence; 1D gas dynamic model; Riemann solvers (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/4947/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/4947/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:4947-:d:1179437
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().