EconPapers    
Economics at your fingertips  
 

Hydrocarbon Fuel Flow and Heat Transfer Investigation in Rotating Channels

Mengqiang Dong () and Hongyan Huang
Additional contact information
Mengqiang Dong: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Hongyan Huang: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Energies, 2023, vol. 16, issue 13, 1-19

Abstract: Ram air turbines are used in the power generation systems of hypersonic vehicles, which can address the problem of the high power consumption of weapon systems. However, high incoming air temperatures can cause the turbine blades of power generation to ablate. At this point, the incoming air can no longer be used as a cooling source to cool the turbine blades. To prevent the ablation of the turbine blades of the hypersonic vehicle power generation, hydrocarbon fuel carried by the hypersonic vehicle itself is used to cool the turbine blades. Hence, hydrocarbon fuels under rotating conditions are investigated. The results show that the rotation leads to a strong pressure gradient that causes the density and dynamic viscosity of hydrocarbon fuel to increase dramatically. Compared to the static condition, the density and dynamic viscosity of the hydrocarbon fuel increase by a maximum of 65.1% and 405%, respectively, under the rotating condition. This leads to an obvious reduction in velocity. The comprehensive influence of the physical properties of the fuel, centrifugal force, and Coriolis force causes the convective heat transfer coefficient and Nusselt number of the channel to first increase and then decrease with the increase in the rotational speed. Compared to the static condition, the convective heat transfer coefficient and Nusselt number increase by a maximum of 69.7% and 45.6%, respectively, under the rotating condition. The critical rotational speed of the Nusselt number from rise to fall is 20,000 rpm for different inlet temperature conditions.

Keywords: hydrocarbon fuel; physical property; Coriolis force; heat transfer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5020/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5020/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5020-:d:1182024

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5020-:d:1182024