EconPapers    
Economics at your fingertips  
 

A Grey Wolf Optimization Algorithm-Based Optimal Reactive Power Dispatch with Wind-Integrated Power Systems

Metin Varan, Ali Erduman () and Furkan Menevşeoğlu
Additional contact information
Metin Varan: Department of Electrical & Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, 54187 Serdivan, Turkey
Ali Erduman: Department of Electric and Energy, Sakarya Vocational School, Sakarya University of Applied Sciences, 54290 Camili, Turkey
Furkan Menevşeoğlu: Department of Electrical & Electronics Engineering, Institute of Natural Sceince, Sakarya University of Applied Sciences, 54187 Serdivan, Turkey

Energies, 2023, vol. 16, issue 13, 1-28

Abstract: Keeping the bus voltage within acceptable limits depends on dispatching reactive power. Power quality improves as a result of creating an effective power flow system, which also helps to reduce power loss. Therefore, optimal reactive power dispatch (ORPD) studies aim at designing appropriate system configurations to enable a reliable operation of power systems. Establishment of such a configuration is handled through control variables in power systems. Various control variables, such as adjusting generator bus voltages, transformer tap locations, and switchable shunt capacitor sizes, are utilized to achieve this objective. Additionally, the integration of wind power can greatly impact power quality and mitigate power loss. In this study, the Grey Wolf Optimization (GWO) approach was applied to the ORPD issue for the first time to discover the best placement of newly installed wind power in the power system while taking into account tap changer settings, shunt capacitor sizes, and generated power levels. The main objective was to determine optimal wind placement to minimize power loss and voltage deviation, while maintaining control variables within specified limits. On the basis of IEEE 30-bus and IEEE 118-bus systems, the performance of the proposed method was investigated. The results demonstrated the superiority of GWO in multiple scenarios. In IEEE-30, GWO outperformed the PSO, GA, ABC, OGSA, HBMO, and HFA methods, reducing total loss by 10.36%, 18.03%, 9.19%, 7.13%, 5.23%, and 7.73%, respectively, and voltage deviation by 68.00%, 1.59%, 36.34%, 41.97%, 46.29%, and 71.08%, respectively. In wind integration scenarios, GWO achieved the simultaneous reduction of power loss and voltage deviation. In IEEE-118, GWO outperformed the ABC, PSO, GSA, and CFA methods, reducing power loss by approximately 19.91%, 16.83%, 14.09%, and 4.36%, respectively, and voltage deviation by 8.50%, 14.15%, 16.19%, and 7.17%, respectively. These promising results highlighted the potential of the GWO algorithm to facilitate the integration of renewable energy sources, and its role in promoting sustainable energy solutions. In addition, this study conducted an analysis to investigate site-specific wind placement by using the Weibull distribution function and commercial wind turbines.

Keywords: reactive power dispatch; optimum power flow; grey wolf optimization (GWO); wind power; renewable power integration (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5021/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5021/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5021-:d:1181961

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5021-:d:1181961