Exploiting Photovoltaic Sources to Regulate Bus Voltage for DC Microgrids
Hongda Cai,
Jing Li,
Yu Wang () and
Wei Wei
Additional contact information
Hongda Cai: School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
Jing Li: School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
Yu Wang: School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
Wei Wei: College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China
Energies, 2023, vol. 16, issue 13, 1-19
Abstract:
DC microgrids are highly compatible with photovoltaic (PV) generation because of their direct-current properties. However, with the increasing integration of PV sources into DC microgrids, traditional maximum power point tracking (MPPT) algorithms may cause problems such as overvoltage and power fluctuation, which makes it challenging to keep the stability of the DC-bus voltage due to the intermittent and stochastic nature of PVs. Consequently, in order to reduce the investment and maintenance costs of storage systems, innovative control methods are required for PVs to provide DC-bus voltage regulation services. In this paper, a novel active power control (APC) strategy, based on characteristic curve fitting, is proposed to flexibly regulate the PV output power. The transient process performance and robustness of the system are improved with the proposed APC strategy. Based on it, a V - P droop mechanism is designed to provide voltage regulating (DVR) service for the DC microgrid. The overall control strategy unifies the DVR function with the traditional MPPT function in the same control structure; thus, the PV source either works in the MPPT mode if the DC-bus is at its nominal value, or it works in the DVR mode if the DC-bus exceeds it. Switching between MPPT and DVR is autonomous, and it is fully decentralized, which improves the PV generation efficiency as well as ensures generation fairness among different parallel PV sources. Case studies including a real-world project analysis are carried out to validate the feasibility and effectiveness of the proposed strategy.
Keywords: voltage regulation; photovoltaic sources; DC microgrids; power dispatch; MPPT (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5123/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5123/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5123-:d:1185551
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().