Electrical Vehicle Charging Load Mobility Analysis Based on a Spatial–Temporal Method in Urban Electrified-Transportation Networks
Shafqat Jawad () and
Junyong Liu ()
Additional contact information
Shafqat Jawad: College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Junyong Liu: College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Energies, 2023, vol. 16, issue 13, 1-14
Abstract:
Charging load mobility evaluation becomes one of the main concerns for charging services and power system stability due to the stochastic nature of electrical vehicles (EVs) and is critical for the robust scheduling of economic operations at different intervals. Therefore, the EV spatial–temporal approach for load mobility forecasting is presented in this article. Furthermore, the reliability indicators of large-scale EV distribution network penetration are analyzed. The Markov decision process (MDP) theory and Monte Carlo simulation are applied to efficiently forecast the charging load and stochastic path planning. A spatial–temporal model is established to robustly forecast the load demand, stochastic path planning, traffic conditions, and temperatures under different scenarios to evaluate the charging load mobility and EV drivers’ behavior. In addition, the distribution network performance indicators are explicitly evaluated. A Monte Carlo simulation is adopted to examine system stability considering various charging scenarios. Urban coupled traffic-distribution networks comprising 30-node transportation and 33-bus distribution networks are considered as a test case to illustrate the proposed study. The results analysis reveals that the proposed method can robustly estimate the charging load mobility. Furthermore, significant EV penetrations, weather, and traffic congestion further adversely affect the performance of the power system.
Keywords: transportation electrification; load forecasting; travel chain technology; performance assessment; Monte Carlo simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5178/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5178/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5178-:d:1187393
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().