EconPapers    
Economics at your fingertips  
 

Optimization of the Lifetime and Cost of a PMSM in an Electric Vehicle Drive Train

Aissam Riad Meddour (), Nassim Rizoug (), Patrick Leserf, Christopher Vagg, Richard Burke and Cherif Larouci
Additional contact information
Aissam Riad Meddour: Laboratoire des Systèmes et Energies Embarqués pour les Transports, Higher School of Aeronautical Techniques and Automobile Construction (ESTACA), Parc Universitaire Laval-Changé, Rue Georges Charpak, 53000 Laval, France
Nassim Rizoug: Laboratoire des Systèmes et Energies Embarqués pour les Transports, Higher School of Aeronautical Techniques and Automobile Construction (ESTACA), Parc Universitaire Laval-Changé, Rue Georges Charpak, 53000 Laval, France
Patrick Leserf: Laboratoire des Systèmes et Energies Embarqués pour les Transports, Higher School of Aeronautical Techniques and Automobile Construction (ESTACA), Parc Universitaire Laval-Changé, Rue Georges Charpak, 53000 Laval, France
Christopher Vagg: Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
Richard Burke: Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
Cherif Larouci: Laboratoire des Systèmes et Energies Embarqués pour les Transports, Higher School of Aeronautical Techniques and Automobile Construction (ESTACA), Parc Universitaire Laval-Changé, Rue Georges Charpak, 53000 Laval, France

Energies, 2023, vol. 16, issue 13, 1-27

Abstract: This study focuses on optimizing the lifetime and cost of an electric vehicle powertrain by optimizing the motor’s geometrical parameters and the bus voltage while considering the battery’s sizing. We employ the WLTP driving cycle to evaluate the powertrain’s performance and use finite element and analytical modeling to consider electromagnetic, thermal, and aging behaviors. Our research investigates the interplay between the battery and motor, exploring how varying the motor geometry and parameters affects the powertrain’s overall lifetime and cost. Our findings will contribute to developing more efficient and cost-effective electric powertrains.

Keywords: electric motor modeling; lithium-ion battery sizing; electric powertrain optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5200/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5200/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5200-:d:1188149

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5200-:d:1188149