EconPapers    
Economics at your fingertips  
 

A Holistic Approach to Power Systems Using Innovative Machine Learning and System Dynamics

Bibi Ibrahim, Luis Rabelo (), Alfonso T. Sarmiento and Edgar Gutierrez-Franco
Additional contact information
Bibi Ibrahim: Industrial Engineering & Management Systems Department, University of Central Florida, Orlando, FL 32816, USA
Luis Rabelo: Industrial Engineering & Management Systems Department, University of Central Florida, Orlando, FL 32816, USA
Alfonso T. Sarmiento: Research Group on Logistics Systems, College of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 250001, Colombia
Edgar Gutierrez-Franco: Center for Transportation and Logistics CTL, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

Energies, 2023, vol. 16, issue 13, 1-29

Abstract: The digital revolution requires greater reliability from electric power systems. However, predicting the growth of electricity demand is challenging as there is still much uncertainty in terms of demographics, industry changes, and irregular consumption patterns. Machine learning has emerged as a powerful tool, particularly with the latest developments in deep learning. Such tools can predict electricity demand and, thus, contribute to better decision-making by energy managers. However, it is important to recognize that there are no efficient methods for forecasting peak demand growth. In addition, features that add complexity, such as climate change and economic growth, take time to model. Therefore, these new tools can be integrated with other proven tools that can be used to model specific system structures, such as system dynamics. This research proposes a unique framework to support decision-makers in dealing with daily activities while attentively tracking monthly peak demand. This approach integrates advances in machine learning and system dynamics. This integration has the potential to contribute to more precise forecasts, which can help to develop strategies that can deal with supply and demand variations. A real-world case study was used to comprehend the needs of the environment and the effects of COVID-19 on power systems; it also helps to demonstrate the use of leading-edge tools, such as convolutional neural networks (CNNs), to predict electricity demand. Three well-known CNN variants were studied: a multichannel CNN, CNN-LSTM, and a multi-head CNN. This study found that the multichannel CNN outperformed all the models, with an R 2 of 0.92 and a MAPE value of 1.62% for predicting the month-ahead peak demand. The multichannel CNN consists of one main model that processes four input features as a separate channel, resulting in one feature map. Furthermore, a system dynamics model was introduced to model the energy sector’s dynamic behavior (i.e., residential, commercial, and government demands, etc.). The calibrated model reproduced the historical data curve fairly well between 2005 and 2017, with an R 2 value of 0.94 and a MAPE value of 4.8%.

Keywords: smart grids; machine learning; peak demand; optimization; system dynamics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5225/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5225/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5225-:d:1189011

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5225-:d:1189011