EconPapers    
Economics at your fingertips  
 

Carbon Peak Scenario Simulation of Manufacturing Carbon Emissions in Northeast China: Perspective of Structure Optimization

Caifen Xu, Yu Zhang (), Yangmeina Yang and Huiying Gao
Additional contact information
Caifen Xu: School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Yu Zhang: School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Yangmeina Yang: School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Huiying Gao: School of Geographical Sciences, Northeast Normal University, Changchun 130024, China

Energies, 2023, vol. 16, issue 13, 1-31

Abstract: The manufacturing industry is the pillar industry of China’s economy and a major carbon emitter, and its carbon emission reduction efforts directly determine whether the country’s carbon emission reduction target can be successfully met. In the context of the goals of the carbon peak and carbon neutrality policy, we examine the impact of manufacturing structure optimization on carbon emissions from 2003 to 2020 through a spatial econometric model, taking the old industrial centers in Northeast China as an example. We then apply a machine learning model to simulate manufacturing carbon emissions during the carbon peak stage and identify the optimal path for carbon emission reduction, which is important for promoting manufacturing carbon emission reduction in Northeast China. Since the goal of low-carbon economic development has gradually replaced the goal of maximizing economic efficiency in recent years, manufacturing structure optimization has come to focus on energy saving and emission reduction. Therefore, we define manufacturing structure optimization from the dual perspective of technology and energy consumption to broaden the existing research perspective. The results show the following: (1) The overall trend in manufacturing structure optimization in Northeast China is steadily improving, and the level of manufacturing structure optimization from the technology perspective is higher than that from the energy consumption perspective. (2) Manufacturing structure optimization and manufacturing carbon emissions in Northeast China both show a positive spatial correlation. Manufacturing structure optimization in Northeast China can effectively promote carbon emission reduction, and it also has a spatial spillover effect. (3) The carbon emission reduction effect of manufacturing structure optimization from the energy consumption perspective is better than that from the technology perspective, and the carbon emission reduction effect under the institutional innovation scenario is better than that under the baseline scenario and the technological innovation scenario. Focusing on manufacturing structure optimization from both technology and energy consumption perspectives, as well as continuously improving technological innovation and institutional innovation, can help to achieve manufacturing carbon emission reduction in Northeast China.

Keywords: manufacturing structure optimization; manufacturing carbon emissions; scenario simulation; spatial econometric model; machine learning model; Northeast China (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5227/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5227/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5227-:d:1189026

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5227-:d:1189026