EconPapers    
Economics at your fingertips  
 

Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems

Ali M. Eltamaly (), Zeyad A. Almutairi and Mohamed A. Abdelhamid
Additional contact information
Ali M. Eltamaly: Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
Zeyad A. Almutairi: Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
Mohamed A. Abdelhamid: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile

Energies, 2023, vol. 16, issue 13, 1-22

Abstract: Due to the rapid advancement in the use of photovoltaic (PV) energy systems, it has become critical to look for ways to improve the energy generated by them. The extracted power from the PV modules is proportional to the output voltage. The relationship between output power and array voltage has only one peak under uniform irradiance, whereas it has multiple peaks under partial shade conditions (PSCs). There is only one global peak (GP) and many local peaks (LPs), where the typical maximum power point trackers (MPPTs) may become locked in one of the LPs, significantly reducing the PV system’s generated power and efficiency. The metaheuristic optimization algorithms (MOAs) solved this problem, albeit at the expense of the convergence time, which is one of these algorithms’ key shortcomings. Most MOAs attempt to lower the convergence time at the cost of the failure rate and the accuracy of the findings because these two factors are interdependent. To address these issues, this work introduces the dandelion optimization algorithm (DOA), a novel optimization algorithm. The DOA’s convergence time and failure rate are compared to other modern MOAs in critical scenarios of partial shade PV systems to demonstrate the DOA’s superiority. The results obtained from this study showed substantial performance improvement compared to other MOAs, where the convergence time was reduced to 0.4 s with zero failure rate compared to 0.9 s, 1.25 s, and 0.43 s for other MOAs under study. The optimal number of search agents in the swarm, the best initialization of search agents, and the optimal design of the dc–dc converter are introduced for optimal MPPT performance.

Keywords: photovoltaic; MPPT; partial shading conditions; convergence time; failure rate; metaheuristic; dandelion optimization algorithm (DOA) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5228/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5228/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5228-:d:1189079

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5228-:d:1189079