EconPapers    
Economics at your fingertips  
 

Inrush Current Reduction Strategy for a Three-Phase Dy Transformer Based on Pre-Magnetization of the Columns and Controlled Switching

Marian Łukaniszyn, Bernard Baron, Joanna Kolańska-Płuska and Łukasz Majka ()
Additional contact information
Marian Łukaniszyn: Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland
Bernard Baron: Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland
Joanna Kolańska-Płuska: Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland
Łukasz Majka: Department of Electrical Engineering and Computer Science, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka Street 10, 44-100 Gliwice, Poland

Energies, 2023, vol. 16, issue 13, 1-21

Abstract: The methodology and test results of a three-phase three-column transformer with a Dy connection group are presented in this paper. This study covers the dynamics of events that took place in the first period of the transient state caused by the energizing of the transformer under no-load conditions. The origin of inrush currents was analyzed. The influence of factors accompanying the switch-on and the impact of the model parameters on the distribution and maximum values of these currents was studied. In particular, the computational methods of taking into account the influence of residual magnetism in different columns of the transformer core, as well as the impact of the time instant determined in the voltage waveform at which the indicated voltage is supplied to a given transformer winding, were examined. The study was carried out using a nonlinear model constructed on the basis of classical modeling, in which hysteresis is not taken into account. Such a formulated model requires simplification, which is discussed in this paper. The model is described using a system of stiff nonlinear ordinary differential equations. In order to solve the stiff differential state equations set for the transient states of a three-phase transformer in a no-load condition, a Runge–Kutta method, namely the Radau IIA method, with ninth-order quadrature formulas was applied. All calculations were carried out using the authors’ own software, written in C#. A ready-made strategy for energizing a three-column three-phase transformer with a suitable pre-magnetization of its columns is given.

Keywords: stiff nonlinear ordinary differential equations; Runge–Kutta implicit methods; circuit model of a three-phase transformer; transient state; inrush currents of the unloaded transformer; the time instant specified in the waveform of the switched supply voltage; pre-magnetization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/13/5238/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/13/5238/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:13:p:5238-:d:1189399

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5238-:d:1189399