Rapid Calculation of Active Distribution Network Reliability Based on Dynamic Equipment Failure Rate
Zifa Liu,
Jiong Li (),
Ting Zhang and
Junteng Shao
Additional contact information
Zifa Liu: School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Jiong Li: School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Ting Zhang: State Grid Beijing Fangshan Electric Power Supply Company, Beijing 102401, China
Junteng Shao: School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Energies, 2023, vol. 16, issue 14, 1-26
Abstract:
The active distribution network has been fully developed because it can achieve efficient energy utilization through the effective control of distributed generation, electrical energy storage, and active loads. However, the research on the reliability of active distribution network operation still stays in the medium and long-term calculation, without considering the influence of dynamic equipment characteristics and active distribution network operation characteristics on reliability. In order to improve the comprehensiveness and calculation speed of the reliability calculation of an active distribution network, this paper proposes a fast calculation method for the reliability of the active distribution network based on dynamic equipment failure rates. Firstly, based on fuzzy-theory and data-driven methods, the cloud model and the Proportional Hazard Model are used to model the dynamic failure rates of exposed and enclosed types of equipment, respectively. This considers the impacts of the dynamic failure characteristics of the equipment on the reliability calculation and improves the comprehensiveness of the calculation. Then, the improved K-means algorithm is used to achieve a faster and more suitable scenario reduction and increase the computation rate. Finally, considering the island operation and contact line transfer under the active distribution network, simplifying the network by improving the minimum path method, the reliability calculation method of the active distribution network combining source–load uncertainty, switch fault information, and load transfer probability is further proposed. The cases show that the dynamic fault rate model is closer to an engineering reality and has generality. The improved K-means algorithm is faster and more accurate than the traditional algorithm. The final proposed fast reliability calculation method reduces the time by 72.76 times compared to the traditional method. It fully reflects the operational characteristics of the active distribution network and provides a reference for the optimal dispatch of the active distribution network.
Keywords: dynamic failure rate; improved service age model; improved minimum path method; load switching; reliability calculation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5245/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5245/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5245-:d:1189667
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().